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Abstract

Spectral methods have proven invaluable in numerical simulation of PDEs,

but the frequent global communication required raises a fundamental barrier to

their use on highly parallel architectures. To explore this issue, we implemented

a three dimensional implicit spectral method on an Intel hypercube. Utilization

of about 50% was achieved on a 32 node iPSC/860 hypercube, for a 64 x 64 x 64

Fourier-spectral grid; finer grids yield higher utilizations.

Chebyshev-spectral grids are more problematic, since plane-relaxation based

multigrid is required. However, by using a semicoarsening multigrid algorithm,

and by relaxing all multigrid levels concurrently, relatively high utilizations were

also achieved in this harder case. In fact, since the amount of work per processor

was higher in this case, we achieved somewhat higher utilization, typically 60%

on moderate sized problems. Thus spectral methods remain attractive on the

current generation of distributed memory architectures.

*Research supported by the National Aeronautics and Space Administration under NASA Contract
NASl-18605, while the second author was in residence at ICASE.

i





1. Introduction. SpectrM methods have proven of great value in numer-

ical simulation of turbulence, numerical weather prediction, acoustics, and in a

variety of other applications. Unlike difference methods, spectral methods accu-

rately approximate all frequencies present on the grid, and are thus well suited to

problems, like turbulence, where accurate resolution of evolving solutions is crit-

ical. However, on parallel machines, the frequent global communication required

by spectral methods seems to impose a fundamental barrier to their continued

use. In this paper, we study this issue, in the context of time dependent implicit

spectral methods.

Communication arises in spectral methods in two principal ways. First, eval-

uation of the spectral operator requires global communication, usually in multidi-

mensional FFTs. Second, in many problems, viscous stability limits constrain the

time step so severely that one must resort to implicit methods. This holds true

especially for Chebyshev-spectral methods, where the close spacing of collocation

points near boundaries imposes severe stability limits on explicit methods.

Given the frequent global communication required, it is not clear whether

spectral methods remain attractive on parallel architectures. That is, the subtle

numerical advantages of spectral methods may be completely swamped by the

high cost of communication and synchronization. This would be unfortunate,

since there are many applications in which spectral methods are invaluable[2].

Thus we undertook to study the basic issues involved in implementing spectral

methods on distributed memory machines, in order to assess the extent to which

spectral methods remain competitive on these architectures.

To explore this issue, we designed and implemented an implicit spectral

method on the Intel iPSC/860 hypercube. Our program performs a multigrid-

based implicit solution of the time dependent, variable coefficient Helmholtz equa-

tion,

u, = Va(x,v,z) "w - b(x,y,z)u + f(x,V,z,t),

on three dimensional tensor product grids, a problem arising in the Uzawa for-

mulation of the incompressible Navier Stokes equations and in ocean circulation

problems.

2. Finite Element Preconditioners. One can solve the nearly dense lin-

ear systems[2] arising in spectral methods in a variety of ways. One of the

best approaches is to use a Richardson or conjugate gradient iteration, precon-

ditioned by inversion of a low order finite element system. Suppose S is the

Fourier-spectral discrete Laplacian, and let H be a low order finite difference or

finite element operator. If H is the standard 5 point Laplacian in two dimensions,

the spectral condition number of the preconditioned spectral system, H -1 S, is

= 2.47, while for bilinear finite elements it is 1.44.



With this improvedcondition number,notedoriginally by Deville and Mund[4],
the convergencerate of optimal parameter Richardsoniteration, given by

x - 1
p -

_+1

drops from 0.42 to 0.18, making Richardson iteration quite effective.

The condition number of the preconditioned Fourier-spectral operator can be

further improved by introducing mass lumping into the finite element discretiza-

tion. In one dimension, this amounts to replacing the finite element system

Ku = Mf

by an analogous system with a partially lumped mass matrix:

)_/ = 0.95M + 0.05I

In higher dimensions, one gets the same effect by tensoring one dimensional

discretizations. Suppose one has the improved one dimensional finite element

discretizations

along x and y mesh lines respectively. Then the analogous two dimensional finite
element discretization is:

(K_®/_/_ + )i_/_/®K_)u = J_/_ ®__/_ f

The condition number of the preconditioned spectral system, based on this im-

proved finite element discretization, is 1.26, for a Richardson convergence rate of

0.11. Since one typically needs to reduce the initial residual by four or five orders

of magnitude at each implicit time step, five or six preconditioned iterations are

needed per time step.

3. Fourier-spectral Grids. Fourier-spectral codes are used in problems

with periodic boundary conditions. For our model problem, at each time-step,

we form spectral residuals by fast Fourier transforms, and invert the spectral

linear system by a sequence of preconditioned Richardson iterations. Since the

convergence rate of the Richardson iteration is 0.11, one multigrid V-cycle suffices

to adequately solve the preconditioning finite element system at each iteration.

Data Distribution. The grids need to be distributed across the processors in

a way that minimizes communication and balances the load. In this section, the

communication requirements of two alternate data distributions, which we refer
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Figure 1: Multigrid Using the Z-Distribution

to as the z- and the xyz-distributions, are compared. In the z-distribution, only

the z direction is blocked, so adjacent xy-planes are placed on each processor. In

the xyz-distribution, all three coordinate directions are blocked, so each processor

owns a subcube of the grid. Both data distributions force communication in both

the FFT residual computation and in the multigrid solve.

With both distributions, we compute the FFTs in all three coordinate di-

rections sequentially on processors, using global exchanges to bring all required

data into the processors. Since each xy-plane lies in a single processor with the

z-distribution, this distribution requires interprocessor communication only for

the z-direction FFT. In this case, a complete exchange of data, where each pro-

cessor sends a block of data of size na/p 2, for an n × n × n grid, to the p- 1 other

processors, is required.

The zyz-distribution requires approximately twice as much communication

for the spectral residual computation. Communication is required so that each

processor holds xy-planes before the FFTs in the x and y directions are calcu-

lated. In addition, before the z direction is calculated, processors must hold yz

or xz planes. Both exchanges can be done with each processor sending messages

of size n3/pS/3 to p2/3 _ 1 other processors.

Both the z- and the xyz-distributions also require communication of bound-

ary data after each relaxation, restriction, and prolongation in the multigrid

V-cycle. In the z-distribution, processor i must communicate boundary planes



to processorsi + 1 and i - 1. In the xyz-distribution, each processor must com-

municate boundary data to six neighboring processors, but the message sizes

are shorter. There is also additional interprocessor communication required with

both data distributions, when performing restriction or prolongation operations

between levels having idle processors. Since there are fewer active processors on

each coarser level, the work of processors becoming idle needs to be sent to the

remaining active processors.

For an n × n × n problem, the number of grid levels in the multigrid V-cycle

is log 2 n. The number of grid points per level is 8 t, where I denotes the level

number, with I = 1 the coarsest grid. The number of grid points owned by

each processor, on the grid levels with no idle processors, is 8t/p for both data

distributions. The number of coarse grid levels containing idle processors for the

z-distribution is determined by log 2 p. On these levels, active processors contain

one xy-plane with size 4 z. In the xyz-distribution, the number of coarse grid

1 log 2 and on these levels,levels containing idle processors is determined by 5 P,

active processors contain only one grid point. Figure 1 shows the communication

required by the z-distribution during the multigrid V-cycle.

Using this information, we computed the amount of communication required

per Richardson iteration for each of the data distributions. The message startup

and byte transfer rate were estimated using values reported for the iPSC/860

by Bokhari[1]. Data distribution in the z-direction led to higher communication

costs in the multigrid algorithm, due both to the greater load imbalance and

longer message lengths. However, the additional communication required by

the xyz-distribution for the FFTs led to higher communication costs for the

complete Richardson iteration. The amount of communication is a function of

both problem size and the number of processors. Generally, for large n and

p _ n, the xyz-distribution is more efficient, while for moderate n and p, the

z-distribution is superior. Based on this analysis, we implemented the Fourier-

spectral code using the z-distribution, since it appeared to be significantly more

efficient for our machine and problem sizes.

Experimental Results: Fourier Case. The experiments were performed

on the 32-processor iPSC/860 at ICASE. Using the best current compiler (Port-

land Group), our utilization was about 65% for the spectral residual calculation

and about 40% for the multigrid solution. The load imbalance and large num-

ber of communication steps in multigrid led to this lower utilization. Thus our

overall utilization, including both the residual calculation and multigrid solution

was about 50%.

4. Chebyshev Grids. Solving the spectral equations on Chebyshev grids

is inherently more difficult, since the grid stretching leads to poor condition

numbers, and since the matrix corresponding to the pseudospectral discretization
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Figure 2: Concurrent Multigrid Data Distribution

on Chebyshev grids is asymmetric. However, a more serious issue is the problem

of solving the finite element system on highly stretched grids. When the mesh

aspect ratios

Ax/Ay, Ay/Ax

are large, point relaxation multigrid is ineffective. Line relaxation sufl:iccs to

resolve this problem in some cases; however, in the general case, one must use

plane-relaxation based multigrid.

There are two viable kinds of plane-relaxation based multigrid, algorithms

employing plane relaxation sweeps in all three coordinate directions and algo-

rithms using plane relaxation in only one direction. The latter are known as

"semi-coarsening" algorithms, since the grid is coarsened in only one coordlnatc

direction. That is, if the fine grid is an n x n x n grid, the next coarser grid

will be an n x n x n/2 grid, the one after that will be an n x n x n/4 grid, and

so on.

Semi-coarsening algorithms are cheaper than plane relaxation algorithms with

relaxation in all three coordinate directions, since plane relaxation is needed

in only one direction. They also converge faster and are less sensitive to grid

stretching[3]. In addition to these numerical advantages, this algorithm is attrac-

tive for parallel computing, since the z-distribution allows the plane relaxations

to be carried out with relatively little interprocessor communication.

Despite these advantages, there is an inherent problem with this approach;
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the sizesof the planesdo not decreaseas one goesto coarsergrids, leading to
very poor utilizations. We addressedthis issue by using concurrent iteration
in which all grid levels are simultaneously relaxed[5]. Combining a concurrent
relaxation multigrid algorithm in the z-direction, with a standard semi-coarsening

line relaxation algorithm in xy-planes, led to a robust and effective algorithm

which is highly parallel and maps easily to distributed memory architectures.

Experimental Results: Chebyshev Case. The Chebyshev multigrid was

implemented using a concurrent iteration multigrid scheme with red-black plane

relaxation. Figure 2 illustrates the distribution of fine and coarse grid planes

across the processors and the communication required during the restriction

phase. The prolongation communication is similar to that for the restriction.

For the Chebyshev case, we obtained processor utilization of approximately 60%

for a 32 x 32 × 32 problem. The increase in utilization was due to both the im-

proved load balance and the increased ratio of computation to communication.

5. Conclusions. Mapping implicit spectral codes to distributed memory

architectures is difficult. While we achieved 50% processor utilization on both the

Fourier-spectral and Chebyshev-spectral codes, this performance is very sensitive

to the architecture's communications capabilities. If processor speeds were to

increase by a factor of ten, without a commensurate increase in communication

bandwidth, spectral methods would become virtually unusable.

As can be seen from our results, we obtained reasonable processor utiliza-

tion, despite the relatively small size of problems considered, without extensive

program "tuning." With larger problems, having perhaps 1024 mesh points in

every direction, we would expect to achieve 75% processor utilization on hy-

percubes having a few thousand processors, assuming the present communica-

tion/computation speed ratio. The amount of exploitable parallelism on this

class of applications is really very large.

To achieve high utilization on machines having thousands of processors will

require several improvements in our algorithm. First, some level of overlap of

communication and computation is necessary. While this is trivial in principle,

it entails extensive programming changes. Second, alternate ways of distributing

the computation on the hypercube needed to be explored. While our approach

of distributing the data in only the z-direction is optimal in some cases, it ex-

acerbates the multigrid "idle processor" problem on coarse grids and increases

total communication. Thus it may be better to use hybrid decompositions, in

which some grid levels are decomposed in one way and others in other ways.

Third, new variants of multigrid[7], based on the use of multiple coarse grids 1

1W. Hackbusch is also exploring the use of multiple coarse grids to obtain robustness (personal

communication).



promiseto eliminate the needfor line and plane relaxation altogether, allowing
muchhigher levelsof parallelism. This is probably the most fruitful direction for
future researchin this area.

Exploring theseissuesis interesting,but rather awkwardat the moment, with
the current Intel softwareenvironment. The availability of better programming

environments, such as the Kali, Dino, and Fortran D languages[6, 8] should dra-

matically ease exploration of such alternatives.
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